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Analytic and asymptotic solutions are obtained for the problem of reconstructing 
the nonsteady boundary heat fluxes in a flat plate with constant thermophysical 
parametersl The properties of the well-posed nature of this inverse problem are 
investigated. 

The method of inversion of linear dynamic systems (DS) was developed in the theory of 
automatic control and encoding for the solution of problems connected with the reconstruction 
of the input signals and control of the output signals of lumped DS [i, 2]. The essence of 
the method consists in the representation of the inverse system in a space of states. Along 
with the solution of the inverse problem, such a representation allows one to answer a number 
of questions of a qualitative character: to indicate the minimum information about the 
initial conditions and outside actions sufficient for the reconstruction of input signals, to 
separate the inverse DS into well-pcsed and ill-posed parts in the Hadamard sense, and to 
determine whether the well-posed part of the DS is stable inthe Lyapunov sense. 

The concept of invertibility of lumped DS is used in the monograph [3] in connection 
with the solution of inverse problems analyzed within the framework of differential-difference 
models of thermal systems.* Some procedures of inversion and conditions of invertibility of 
distributed DS are proposed in [4-6]. 

In the present article the method of inversion of DS is used to solve the well-known 
problem [7] of reconstructing nonsteady boundary heat fluxes from the results of differential 
temperature measurements. The proposed approach yields an analytic solution ~nd answers the 
above-stated questions of a qualitative character. We note that in the construction of an 
inverse system, a non-self-adjoint, boundary-value problem with a nonclassical boundary condi- 
tion arises [8], which we reduce to the successive solution of two simple, self-adjoint, 
boundary-value problems. 

Under the assumption of constancy of the thermophysical properties, we consider an in- 
finite flat plate subject to thermal action from one side (x = s > 0) and thermally insulated 
on the other (x = 0). The inverse problem consists in the reconstruction of the heat flux at 
the surface x = s by measuring the temperature difference T(s, t)--T(0, t). The corresponding 
DS ~ describing the direct problem has the form 

[T~ = a T ~  -k f (x, t), T (x, O) = To (x), 

f~ : ITx (0, t) ~ O, - - ~ T ~  (s, t) = q (t), 
[9 (t) = T (s, t) - -  T (0, t). 

From the system point of view [9] this inverse problem can be interpreted as the problem of 
reconstructing the input q of the DS ~ from the output y. The volume of information about 
the initial state To(x) and the internal source of power l/a f(x, t) which is needed to re- 
construct q is of definite interest here. 

To represent the inverse system ~-~ in the space of states we transpose the input and 
output of the direct DS ~. As a result, we obtain 

*Instead of the term "observability at entry," proposed in [3], we use the term "inverti- 
bility of DS," popular in the literature on system theory. 
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[T~ = a T ~  + [, T (x, O) = To (x), 

Q - "  IT~(O, t) = O, T (s, t ) - -  T(O, t) = y(t) ,  
[q (t) =- - - s  (s, t). 

(i) 

(2) 

(3) 

Now to calculate q we must determine the Green's function for the boundary-value problem (i), 
(2). Since the generating operator A of the problem (i), (2) 

A w = a w x ~ ,  wx (O)=O,  w ( s ) - - m ( O ) =  0 

is not self-adjoint and the spectrum A is double, the construction of the Green's function 
is associated with certain difficulties. As shown in recent research [8], however, for a 
certain choice of the system of eigenfunctions and adjoint functions the operator A of the 
Green's function can be constructed using the method of separation of variables. We offer 
another approach, connected with the idea of reduction to the space of states and allowing one 
to reduce the solution of a non-self-adjoint problem to a successive analysis of two self- 
adjoint systems. We also note that the spectrum of the operator A is located on the non- 
positive part of the real axis. Consequently, the DS ~-I is stable in the Lyapunov sense. 

We expand the space H of states of the DS ~ into a direct sum of two subspaces H + and 
H-, 

T+ (x, t) = 

T -  (x, t) = 

T(x ,  t ) + T ( s - - x ,  t) 

2 

T(x ,  t) - -  T (s - -  x, t) 
2 (4) 

In accordance with (4), T § is the even part of the function T relative to the axis x = s/2 
and T- is its odd part. Substituting (4) into Eqs. (i), (2), and (3) and using the relations 

T26H-, T~6H+ , and T------0~----~{T§ T-~0}, we note that the DS ~ can be represented in 

the form of a parallel union of two DS, ~+ and ~- (see Fig. la), where 

I T = aT + + [% 

i>  I., o>: 
]--2~.T; (s, *) = q (t), 

l T+ 6 H+, 

TT- = aT;-. + [- ,  

IT-  (x, O) = To(x ) ,  

Q- : { - -2%T7 (s, t) = q ( t ) ,  

y (t) = (s, 0, 2T -  

T -  ff l t - .  

The form of the block diagram of the inverse DS ~-i follows directly from Fig. la (see 
Fig. ib). The generating operator of the inverse DS 

I T 7  = a T ~  + [-,  T -  (x, O) = T o  (x), 
(~-)-~ : /2T-  (s, t) = y (t). T- C H-,  

[q (t) = - - 2 K T y  (~,~ t) 

(5)  

(6)  

already possesses the self-adjoint property in the space H-, so that the Green's function 
of the boundary-value problem (5), (6) is easily calculated using the method of separation 
of variables. Moreover, the DS (~-)-i is a narrowing of the ordinary DS 

IT, = a T ~  + [-,  T (x, O) = T o  (x), 
v~ : 12 T(O, l) = --9 (t), 2V(s ,  t) = y( t ) ,  

~q (t) = - - 2 ~ G  (s, t) 

(7) 

(8) 

with boundary conditions of the first kind, to the space of states H-. In other words, the 
equality 

(Q-)-~ = ~ -  (9)  
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g / - J- 
/ + ~  T+(S,~T_(s,t ) q ~  "L_~' 

Fig. i. Block diagrams of the dynamic systems ~ (a) 
and ~-i (b). 

is satisfied. The Green's function of the boundary-value problem (7), (8) is known, so that 
the form of the Green's function* of the DS P- follows quickly from Eq. (9): 

�9 -(x, ~, t ) =  -- X sin 2 k n x  2ka~ - -  sin - -  exp 
s h= l  s s \ -~---/ 

Thus, the value of the heat-flux density in the plane x = s can be calculated from the 
equation 

q (t) = - -  -- i , 
Ox o o b o 

Following the usual concepts of the well-posed nature of linear equations, we call the 
inverse DS ~- well-posed relative to the pair of Banach spaces M and N if the affiliation of 
the output q(-) to the space N follows from the condition of as of an arbitrary input 
y(') to the space M. The equivalence of the well-posed properties of the DS ~- relative to 
the pair of spaces M and N and the continuity of the input-output mapping acting from M into 
N follows from the well-known closed-graph theorem. 

We demonstrate the well-posed nature of the DS ~- under the assumption that the input 
I 

actions y(') satisfy the HDlder condition (M=h=[0, b]): IY(T')-- y(~")I<kI~'--x"I ~, -~<~|, 

k>0, O~'~.~"~.~b, O<b<oo, while the output functions q(') are estimated in accordance 
with the norm 

b 

Iq (x)[ dx 
0 

o f  t h e  s p a c e  o f  f u n c t i o n s  summable  o v e r  t h e  s e g m e n t  [0 ,  b]  (N = L[O,  b ] ) .  F o r  t h i s  we u s e  t h e  
transformation 

x 

T-  + V+ f T -  (~, t) o~ + v (t) = Vx , V+ E H+, = .. 

2 

of the space of states H- of the DS P-. 

We set v(t)= Vt + t --ag~ -g-, t , and then we obtain the DS 

: a v  + + L v +  (x, o) -_ v + (x), 

~+ }2V$ (s, t) = y ( t ) ,  
:1 

I q(t) = - - 2 k V + ( s ,  t)=___ 2~ ( V + ( s ,  t ) . ' f ( s ,  t)), 
a 

S S 
-7- T 

*We shall designate the Green's function by the symbol for the corresponding dynamic system. 
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equivalent to the system ~- in the sense of input--output mapping, The Green's function of 
the DS ~+ coincides with the Green's function of the DS ~+ and has the form 

~] 2k~x 2ka;~ 
~ * ( x ,  L t)--  1 1 + 2  c o s  c o s  

S ~ S 

From this we get one more expression for the heat flux q: 

2~ d 
q (t) = (1" 9+ (s, ~, t) V+o (~) a~ q- a d t  

~ d ( i t )  

The function 

I ( ~ ( / 2kn'~2 NN k s / / /  ~q+(s, s, t ) = - -  - - I + 2  exp - - 1 - - }  at)] 
g k = O  

majorizes ~+(s, 6, t) and, according to [i0, p. 58], has the asymptotic representation 

, ( ( 2]/-~-~ 1 -+- exp -- - - .  (12) 
4at 

for t § 0, t > 0. Therefore, to prove tha~ the DS ~+ is well-posed relative to the pair Hal0, 
b] and L[O, b] i~ is sufficient to note that the operator 

21/~-a dt o V t--  ~: 

acting from the ~pace Ha[0, b] into the space L[0, b], is bounded. As is known [ii], the 
boundedness of P follows from the expression .... 

We note that, relative to the pair of Baoach spaces H~[0, b] and H~[0, b], natural in the 
treatment of experimental data, the i~ve[se ~ystem P- no longer has the ~raperty of being 
well-posed. 

Thus, if T~(x) = 0 and f- = 0, then in calculating q for short times one can, in accor- 
dance with (12), u~e the asymptotic equation 

q(O~--2~/--~d f ~  d! o ~]/a~U(')d'(l--T) -t ) 
0 

where 

K (0 = ---::-, ~ . - -  e x p  - ~ .  
4at 

1 8a ] / a ~  (-~--- 2a) exp ( s~ 
4at ) " 

To dwlermine she quantity q(t) from Eq~. (i0) and (ll) in the general ~ase it is suffi- 
cient to have the odd parts Tg(x) and f-(x, t), relative to the axis x = s/2, of the initial 
temperature distribution of the plate and the power of the internal ~ources as the additivnal 
information. 

In conclusion, we give the representation, following from the block diagram of the DS 
~-i, of the Green's function ~-1(x, 6, t) of the nonclassical boundary-value problem (i), 
(2): 

f 

~-i(x,  ~, t ) =  9+(x, ~, t ) +  v - (x ,  ~, t ) +  .i ~+ (x, o, ~ )~F  (o, ~, t - - ~ d ~ .  
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NOTATION 

T, temperature field; x, spatial coordinate; t, time; a, coefficient of thermal diffu- 
sivity; %, coefficient of thermal conductivity; %/a f, power density of volumetric heat sources; 
~, dynamic system (DS) describing the direct problem of heat conduction; q, heat-flux density 

- T(s, t) -- T(0, t), output of DS ~; H, space of at the wall x = s (input of DS g); y(t~ ~ b], 
states (temperature fields) of DS ~; H [ , Banach space of functions defined on the seg- 
ment [0, b] and satisfying the HSlder condition; L[0, b], space of summable functions. 
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